Cargando Eventos

Análisis integrado de datos -omicos en enfermedades complejas (II ed.)

Código: 21GR09 Granada
04/10/2021 al 13/10/2021

Lugar celebración:
Granada, Facultad de Ciencias

Dirección:
Pedro Carmona Sáez
Departamento de Estadística e I.O., UGR,

Michael Hackenberg
Departamento de Genética UGR,

Coral del Val
Departamento de Ciencias de la Computación, UGR

Posibilidad de reconocimiento de créditos
Este curso tiene reconocidos, hasta el momento, créditos en los siguientes Grados:

1 crédito ECTS Optativo en la ETS de Ingenierías Informáticas y Telecomunicaciones en el Grado en Ingeniería Informática
2 créditos ECTS Optativo en la Facultad de Ciencias en el Grado en Biología
2 créditos ECTS Optativo en la Facultad de Ciencias en el Grado en Biotecnología

Introducción:

La aparición de las tecnologías –omicas, como los métodos de secuenciación masiva, ha supuesto una revolución en el campo de la biología molecular y por consecuencia, las disciplinas que hacen uso extenso de sus métodos como la biomedicina. La gran cantidad de datos que generan estos métodos ha permitido entender mejor las causas moleculares de muchas enfermedades complejas como el cáncer, facilitando el descubrimiento de biomarcadores y dianas terapéuticas. En este contexto, las técnicas estadísticas y bioinformáticas son esenciales para analizar esta enorme cantidad de datos y extraer conocimiento.

En el presente curso se dotará a los asistentes de los conocimientos básicos en los principales tipos de análisis de datos -omicos que se llevan a cabo para el estudio de una enfermedad compleja como es el cáncer. Para lograr este objetivo, se propone una formación fundamentalmente práctica donde se irán explicando y aplicando las diferentes técnicas de análisis a un conjunto de datos del proyecto TCGA (The Cancer Genome Atlas Program).

Se verán los fundamentos de las principales técnicas desde la descarga de datos, pre-procesamiento y análisis exploratorio así como análisis de descubrimiento de clases o clustering, descubrimiento de biomarcadores y análisis avanzados para la interpretación funcional de los resultados.
Se usarán aplicaciones web y el lenguaje de programación R, por lo que se expondrán conceptos básicos en el uso de este lenguaje de programación.

Competencias del alumnado

El alumnado sabrá/comprenderá

La importancia de métodos de alto rendimiento en campos como la biomedicina
Los protocolos principales de la secuenciación masiva y sus aplicaciones en el campo de la biomedicina.
Los fundamentos de las principales técnicas de análisis de datos -omicos, como métodos de clusterización, tests estadísticos para determinar expresión diferencial, etc
Los principales tipos de análisis funcionales in silico
Principales recursos y bases de datos –omicos de cáncer

El alumnado será capaz de

Interpretar los resultados de análisis genómicos y comprender los principales métodos de análisis
Obtener y descargar información de los principales repositorios de datos –omicos
Comprender los tipos de datos y fundamentos del análisis de datos de NGS (rnaSEQ, dnaSEQ, tec)
Ejecutar en R algunos de los principales análisis para descubrimiento de biomarcadores (expresión diferencial), subtipos de enfermedades (clustering), clasificadores, etc
Realizar análisis funcionales y de rutas biológicas

Método de evaluación:

● Al ser un curso práctico la asistencia será un factor fundamental a tener en cuenta y se valorará con un 70% de la nota final
● Participación activa y competencias en los casos prácticos y ejercicios que se van a llevar a cabo en clase un 30%

Cualificación personal o empleos a los que da acceso:

El alumnado se formará en aspectos fundamentales del análisis bioinformático de datos -omicos. Este es un perfil actualmente con gran demanda tanto en centros de investigación como en empresas del sector biotecnológico, estando también empezando a incorporarse en el ámbito sanitario a través de institutos biosanitarios con convocatorias específicas para este tipo de perfiles

Lunes, 4 de octubre de 2021

16:00-17:00 Importancia del estudio genómico en medicina de precisión de enfermedades complejas.
Dr. Juan Antonio Marchal. Departamento de Anatomía y Embriología Humana. Universidad de Granada
17:00-20:00 Fundamentos de análisis estadístico y bioinformático de datos Omicos en Biomedicina.
Dr. Pedro Carmona Sáez. Departamento de Estadística. Universidad de Granada.

Martes, 5 de octubre de 2021

16:00-20:00 Fundamentos del Análisis de datos de NGS
Dra. Cristina Gómez, Amsterdam UMC

Miércoles, 6 de octubre de 2021

16:00-20:00 Introducción a R.
Dra. Coral del Val, Profesora Titular Departamento de Ciencias de la Computación, UGR

Jueves, 7 de octubre de 2021

16:00-20:00 Visualizaciones en R. Descarga y análisis explorativo de datos clínicos y -omicos
D. Juan Antonio García Villatoro. Departamento de Estadística. Universidad de Granada.

Viernes, 8 de octubre de 2021

16:00-20:00 Análisis de datos de Transcriptoma
Dr. Carlos Cano, Departamento de Ciencias de la Computación, UGR

Lunes, 11 de octubre de 2021

16:00-20:00 Análisis de datos de Metiloma
Dr. Jordi Martorell, GENyO

Martes, 12 de octubre de 2021

16:00-20:00 Clasificación y Clustering
Dr. Michael Hackenberg, Departamento de Genética, UGR

Miércoles, 13 de octubre de 2021

16:00-20:00 Análisis de supervivencia y Multivariante
Dr. Pedro Femia, Departamento de Estadística, UGR
Dr. Juan Melchor, Departamento de Estadística, UGR